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We examine a differential game in which the players can control the system’s 
motion with the aid of generalized impulses. Similar problems were investigated 
in [l-S]. In this paper we describe position procedures of control with a guide, 
within the framework of which we establish alternative conditions for the solva- 
bility of encounter and evasion problems. The fundamental constructions used 

in the paper are similar to the extremal construction proposed in (6-81 for dif- 
ferential games with geometric constraints on the players’ controls. 

1. We examine a differential game in which the motion of a conflict-controlled sys- 

tem is described by the equation 

2’ = f (t, x) + B (t) U’ + C (t) V’ + x,6 (t - to) (1.1) 

Here z is the system’s ~-dimensional phase vector, the function f (t, CC) is continuous 

in all arguments and satisfies a Lipschitz condition in 5, U and 5 are vector-valued 
controls of the first and second players, of dimensions I, and I,, R (t) and c (t) are 
continuous matrix-valued functions of appropriate dimensions, 6 (t - to) is a delta- 
function, z0 is the system’s initial state at the instant t = I,,. Equation (1.1) is exam- 
ined on the semiaxis 2 > t, and is to be understood in the sense of the theory of disai- 
butlons [9]. As the admissible controls Li [t] and V [tJ we choose functions identically 

equal to zero for t < to and right-continuous. We assume that the variations of the 

admissible controls satisfy the relations 

Here ltQ and v,, are numbers speci$ing the control resources of the first and second play- 
ers, [to, fJ] is the time interval on which the game is examined ; the variations of the 

controls are given by the relations 

(1.3) 

i 11 dV [t] jJ = /I V [toI jl -i- SUP i /I V [%I - v f%l II 
to i=l 

where the upper bound is taken over all possible finite partitionings of the interval It,, 

S] (ZiJ = t, < ri < 0.. < aR = 6),the symbol 11 F 11 denotes the Euclidean normof 
vector I;. For each pair of admissible controls u It] and v It] a solution of system 
(1.1) exists and is unique, viz, a function 2 It] of bounded variation, right-~ntinuous, 
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identically equal to zero for t < t 0 , and satisfying system (1.1) in the sense of the 

theory of distributions (cf. [9] ). 
The differential game being investigated here is composed of the encounter problem 

and the evasion problem. The en co u n t e r pro b le m , facing the first payer, con- 
sists in ensuring that the point { t, z [t] } reaches a given set M* at some specified ins- 

tant t = 6 and is guaranteeing here the fulfillment of the phase constraint {t, z It] } E 
Iv* up to the contact of point {t, II: [t] } with set Al*. The evasion problem, 

facing the second player, consists in guaranteeing that either the point (6, II: [t]} evades 
contact with set M* up to the instant t = 6 or the phase constraint {t, X [t] } E A” 
is violated before the point {t, X [t] } reaches set AT*. 

We are required to find the solutions of these problems in the class of position control 
methods using information only on the game positions realized. Here, by a game position 

realized at instant t we mean the vector 

p [t] = {t, J: [t - 01, p [t - 01, y [t - Ol> 

where the symbol s [t - O] denotes the limit from the left of the function s [T] at the 

point T :: i; the quantities p [t] and Y [t] estimate the control resources available to 
the first and second players at instant t ; these quantities are specified by the relations 

We examine the case when the sets lv* and iv* are closed and are cylindrical in the 

directions of the axes of those coordinates Xj for which the corresponding components 
Xj [t] of motions X [1] can be affected under the impulse actions of the controls. We 
prove that in this case, for any initial game position p. = {to, X0, /Lo, vO} and for any 

number 71 > t, , either the first player’s problem of encounter with set M* at instant 
t = 19 or the second player’s probiem of evasion up to instant t = 6 is always solvable. 

In the proof we use an exaemal construction analogous to the comstructions in [S - 81 and 
modified with due regard to the impulse character of the controls. 

2. Let us inaoduce the elements of the extremal construction used in solving the 
encounter problem, We consider the following auxiliary system : 

x’ = f (t, x) + B (t) U,’ + C (t) V; + x,6 (t - to) (2.1) 

where the vector p* = {t*, x*, p*, v*} plays the role of the initial position. The con- 
cepts of admissible controls and their resources for this system are obtained 

responding concepts for system (1.1) replacing pO = {to, x0, pO, Y,,} by 
X*, p*, y, }_ Here we assume that , 

I/‘*’ ct> = 2?*6 (t - f*) 

where ZJ* is some I, -dimensional vector satisfying the condition 11 V* 11 < 
Definition 2.1. The collection of points p* = (t*, X*,/-L*, Y*) 

x*=2,+~f(t,x,t,)dt+ f B(t)dU*(t)+C(t*)u* 
f* t*-0 

o<P*\(P* -5 IIdU*(t)/L y* =y*-lb*lI 
t* 

from the cor- 

Px = it*7 

CL 2) 

v** 
of the form 
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where u, (t) are arbitrary admissible controls of system (2.1) and z [t] are the cor- 
responding solutions of system (2. l), is called the attainability region G (t*, p*, v,) 
of system (2. l), constructed for the instant t = t* from the initial position p* under a 

fixed control V, (t) of (2.2). 
Here t* t- 

s 
B(t) dU, (t) = lim s B(t)&(t), A>0 

t,-0 A-+0 t,-A 

the integrals in the right-hand side of this relation are to be understood in the sense of 

Stieltjes. We note that the set G (t*, p*, v,) turns out to be closed. We introduce 
into consideration the sets 

M = [p = {t, 5, /_L, v} : {t, Lx} E M”, /A > 0, v > O] 

N = [p = {t, 5, p, v} : {t, x} E Al*, p > 0, v > O] 

Let ,!I be some set in the space of vectors p = {t, 2, y, v}and let the symbol & 
denote the section of this set by the hyperplane t = ‘6. 

Definition 2. 2. Let W(U) be some set in the space of vectors p = {t, z, p, 

v}. *We say that this set is a u-stable bridge in the encounter problem if 

and if one of the following two conditions (r is some point of the interval [t,, t*]) 

G (t”, P*, V,) f-l I+‘@) # 6 G (.t, P*, V,) f-j iv f: @ 

is valid for any point p* = {t*, x*, p*, 

and for every control v, of form (2.2). 
V*} E WC”), for any instant t* E [t,, 61 

We note that in this definition we do not exclude the case WercU) = @. It can be 
shown that the closure of every u-stable bridge is, as before, a u-stable bridge. In what 

follows we examine only closed bridges WC”). 
bet us describe the first player’s position control method which yields the solution of 

the encounter problem. The construction proposed here is based on the guide-control 
scheme, similar to the constructions in p, 83. Let WC”) be a u-stable bridge and let 

Wlo(“) # @. By PO*= {to, %*r %*, vo*} we denote the point of set Wto(u) nearest 

to the point PO = {to, x0, p,,, vo}. We select some covering of interval lto, 01 by 

equal intervals 

tri, .ci+r), i = 0, 1, . . . , TTZ - 4; T,, = t,, Tm = 6, 7i+l = 7i + A 

We assume 

r’1 (to> = 0”” -p i ? 

0* 

’ 

PO > PO* vo* - YO, 

~0 GPO* 7 r2(t0) = o 
l > 

vo* > vo 

vo* < YO 

We determine the vectors no and v,*from the condition 

II zo - G* + B (to) uo - C (to) uo* II= min 1) x0- x0*+ B(to)u -C(to) ~11 (2.3) 11 2) 

for I] u (1 < r1 (to), II 2, Ilk rz (to) 

We determine the first player’s control in system (1.1) for to < t < to + A by 
the relation UA’ [1] = U,6 (t - to) 
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This control, in pair with some control of the second player, realizes a motion of system 
(1-l) for & < t < 71. To construct the control UA [t] for Zi < t < ‘G~+~ we de- 
termine the point 

assuming here that the intersection of the sets is nonempty, while the contra1 lii_l* is 

given by the relation 
v&i*. (t) = t&i* 6 (t - X&i) (2.4) 

We determine the quantities 

rI(zti) = min {p*Iri_ll - p*[Til, y tag- 01} 
P2(7i) = min {v tTi_, - 01 - Y hi - 01, v*[zil) 

Vectors ui and vi* are found from the condition 

il J: Izi - 01 - x* ITil + B (Tf) Ui - C (.ti) zli*jj = 
min II 3 [T.i - 01 - s*Icil + B (ti) u - C (ti) u 11 

for? u II \c r&i, II v !I < r&i) 

CL 5) 

and we assume 
Ei’A’ ItI = u& (t - Zi), 7i < t ( ‘CZ+~ (2.6) 

This control, in pair with some addmissible control k’ it] of the second player,realizes 

the motion of the system (1.1) for ri < t < ‘ti+i. If the condition 

G (‘ti, piAl*, V,-,*I l-j W”) # Cp CL? 

is fulfilled for i = 1, 2, . . ., m _ 1, then the procedure described above specifies 
the control UA ltl of (2.5), (2.6) up to the last instant t = @. 

Let us now consider the case when condition (2.7) is satisfied only for i = i, 2, . . ., 

ii m- l, Then, we determine the control lJA [t] by the above-mentioned method 
up to the instant t = ZJ. Next, we determine the control Ua [tl for rt < t 6 6 
from relations (2,5), (2.6), assuming that for i > j the points pi* are chosen arbitra- 

rily from the sets C (TV, pi-I*1 F’ii_l*).’ N ote that by ~nsuuction pj” E $$%J, there- 
fore, from the condition 

G (fj+l, pj*, V,*) 0 TV’“’ = # 

follows (see Definition 2.2) the existence of an instant r* E [rj, rf+i], for which the 
relation 

is valid, Le. in this case we can say that the point {rjt X*(rj)} is located not far from 
set M*. Note also that the choice of controls UA f t] and V*(t) from conditions 
(2.4) - (2.6) ensures the mutual tracking of the motions of the original system (1.1) 

and of the guide whose positions at the instant t = ‘ti are denoted here by p*lz,]. 
The motion of system (1.1). generated by the control UA It] of (2.5), (2.6). is deno- 

ted by the symbol x3 ft, pot V’ 1.1, W(u)], where p,, = (t,, q,, po, Y@} is the ini- 
tial position, A is the step size of the recurrence procedure. V ft] (t > to) is the 

second player’s admissible control realized in system (1.1) in pair with the control 
UA [t]; TV(u) is a u-stable bridge for which the guide-control procedure being exam- 
ined was constructed. These motions are called approximated. Together with the appro 
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ximated motions we introduce the motions determined by passing to the limit in the 
sequence of ap~oximated motions. 

Definition 2. 3, The summable function z (l) (tO 6 t < 9) for which there 

exists the sequence of approximated motions 

z&[t] -5,$ [t, pbk’, @‘[.I, IV’“‘], t,<t.<ij, ii :I, 2, . . . 

converging to it in the metric of space I, It,,, 6] and satisfying the conditions 

Ak -+ 0, p&Q = (to, zg(P), p&“‘, ~~(~0) -+ i-‘o ~= (lo, %t PO, vtt) 

for i&+00 

is called a motion x (t, po, wI”‘) (to < t ;\< 6) of system (1. l), generated by the 
first player’s guide-control procedure. 

We note that the existence of the motions x (t, pO, I?““‘) can be established by using 
Helly’s theorem. 

The following assertion is valid. 
Theorem 2.1, If the initial position PO = (to, x0, po, vo} is contained by the 

u-stable bridge IJPzL’, then for any motion 5 (t, pot -c;lr(“)), the point {t, x (t, po, 

WC”))} reaches set M* not later than at the instant t = 6 remaining in the set N* 
up to contact with set M*. 

Let us indicate the salient features of the proof of this theorem. Let us consider the 

approximated motion x~ It, p. tA), V Ia I, tiutl (to < t < 6). Simultaneously with 
the realization of this motion we form, by the method defined above, the guide’s motion, 
i.e. we select the points pi* = p” [TJ moving along the bridge WtzL) and reach set 
M at some instant t t= T*, The controls us [t] and r/* (t) are chosen from condi- 

tions (2.4)-(2.6) so as to ensure the mutual tracking of the motions of the original sys- 
tem and the motions of the guide. Thus, the proof of this theorem is reduced to estimat- 

ing the distance between the motions of the original system (1.1) and the guide. Wenote 
that it is convenient to carry out the required estimation of the distance between the 

motions X~ [t] and zL*[t] (to < t < 6) in the metric of space L, [to, S] ; it can be 
established that this distance satisfies the relation 

plz‘?,f=l, x~*I*l)+o as A-+0 (2.8) 

uniformly for all the motions being examined under the condition that I] pi’j - 

p:(fiJ 11 -+ 0 as A -+ 0. 
From estimate (2.8) we conclude that uniform convergence obtains for all those com- 

ponents of the vector-valued functions XL [t] and z~ * [t 1. which are not affected under 

the impulse actions of the controls OR systems (1.1)‘ (2,l). Therefore, the situation for- 
mulated in Theorem 2.1 acquires the following meaning : if po E FVi”‘, then for ar- 
bitrary number E > 0 there exists A (E) > 0 such that when A < A (8) , the point 

(27 21 111) falls into the e;neighborhood of set -11” for every approximated motion 
53 ItI :-z= XL It, po, I’ ]*I, CV”‘1 ,remaining in the b-neighborhood of set IV* up to 

contact with the E-neighborho~ of set 114”. 

3. Let us consider the evasion problem. When investigating this problem we take 

advantage of the construction introduced above to solve the encounter problem. 
Definition 3.1. The collection of points p* = {t*, L*, p*, v*} of the form 
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t* t* 

5* = x* +s f(t,J:[tl)dt+ s c(t)dV*(t)+B(t*)u* 
t* t*-0 

@<v’<v,-~,ldl’.P~,,. P*=P*-l(Iu*I) 

(where V, (t) are arbitrary admissible controls of system (2.1) and 2 lrl are the corre- 

sponding solutions of system (2.1)). is called the attainability region G (t* , p*, U,) 
of system (2. l), constructed for the instant t = t* > t, from the initial position 

P* = it** x1, p+, v* } under a fixed control U,(t) of the form 

u, (t)==u*6(t-t*)? II~*ll\<P* (3.1) 

Let G and H be sets defined by the relations 

G = [p - {t, z, PL, v}: {t, x} E G*, p > 0, v > 01 

H = [p = {t, 5, /_L, Y}: {t? x} E H”, p > 0, v > 01 

(3.2) 

where G* and H* are certain closed sets satisfying the conditions 

G* n M* = 0, H* n N” = @ (3.3) 

Definition 3.2. let I&‘(T) be some set in the space of vectors p = {t, 5, ~1, 
v}. We say that this set is a u-stable bridge in the evasion problem if sets G and H 
of form (3,2), (3.3) exist such that the condition 

W(u) c G 

is satisfied, and if one of the following two relations (T is some point of interval [t,, 
t*j): 

for any point p* = {t*, x*, p*, v,} E WC@, for any instant t* E [t,, S] , and 
for every control u, of form (3.1) is valid. 

For the v -stable bridge J.+‘(v) we introduce the second player’s guide-control proce- 
dure which differs from the first player’s control method described above only in the 

replacement of sets ikf and N by the sets H and G , respectively, and in the inter- 
change of the roles of the first and second players. The motions of system (.l, l), genera- 

ted by these control methods are denoted by the symbol XA [t, PO, u 1.1, WC”], 

where p. = {to, x,,. po. vo} is the initial position; A is the step size of the recurrence 

procedure ; lJ [t] (t > to) is the first player’s admissible control realized in system 
(1.1) in pair with the control VA [t] prescribed by the guide-control procedure; W(u) 
is the v-stable bridge for which this second player’s control procedure was constructed. 
These motions are called approximated. Next, we introduce motions defined as the li- 

mits of certain sequences of approximated motions. 
Definition 3.3. A summable function x (t) (f,, < t < 6) for which there 

exists the sequence of approximated motions 

5k [t] = zAk [t, #“, u”O [ ‘1, i@“‘], t,<t<i+, k=l, 2, . . . 

converging to it in the metric of space L [to, 61 and satisfying the conditions 

Ak-;.o, PO (Ir) = {t,, xhk', pb"', VT)}--z p. = {to, 50, po, vo) at k- 00 
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is called a motion z (t, pO, W(O)) (to \( t < 4) of system (1.1). generated by the 
second player’s g~de-~n~ol procedure. 

The following statement is valid, 
Theorem 3.1. If the initial position p. = {to, q,, po, vo) is contained by 

the c-stable bridge IV@), then for any motion 5 (t, p,,, WC”)) the point {t, 5 (t, p,,, 

WC@)} remains in set G* either for all t e [to, S] or up to the instant %* when this 
point first reaches set H*. 

Sets C” and H* satisfy relations (3.2), (3.3); therefore, this theorem establishes that 
the evasion conditions are satisfied for the motions x (t, po, Wt@) . We note that the 

meaning of Theorem 3.1, as well as Theorem 2.1, is revealed when considering the 
approximated motions (see the analogous note at the end of Sect, 2). 

4, Let us indicate certain properties of the construction introduced, which we use 
below in the proof of the aIternative for the enco~ter-evasiondifferential game. 

Lemma 4.1. The union of a finite number of v-stable bridges iV$u) is a 2;-sta- 
ble bridge, 

The validity of this statement is established by a direct verification of the properties 
of a ~stable bridge for the set 

l;l;@) = tfj I/@’ 
izr 

Note that the sets G and ff corresponding to the bridge I$‘(“) are obtained as the 

unions 

where Gi and N, are the sets corresponding to the bridges Wi(‘). 

Lemma 4.2. For any point p* = {t*, z.+, I.&+, v,) belonging to a v-‘stable 
bridge kflcu) there exist a neighborhood of this point 

& (P,) = [P = {I*, x, PL, v>: II 5 - 5* II \(a, I CL - P* I < 8 

I y - v, I < E, p > 0, v a 01 

and a zl?-stable bridge H’*(c) such that S,(p,) C Ifr*(‘). 

In the proof of this lemma we use the property of semi~ntinuo~ dependency of the 

motions 5 It, p.+, W(r)) (t+ ~< t 6 6) on the initial position P* z it*, I,, II*, I’*}. 
This property consists in the following: if p*(‘) ;7 {t*, x:‘, p* , xj!)} + Ij* _= 0;) 

{l*, x*’ p*, v*>, x(*7 pit?, iv(“)) * x.+( *) as /i +cc (here the convergence is 
in the metric of L If,, Sl), then the function x%(t) (1, < t < ii) is one of the 

motions 2 (t, p*, IV(‘)). 
Lemma 4.3. Let GV, be the union of all possible z -stable bridges ; 1V” be the 

complement of set Iv,,. Then set 1%“” is a u-stable bridge in the encounter problem. 
Let us mention the highlights of the proof of this lemma. At first we show the fulfill- 

ment of the conditions 
(4.1) 

Every set II of form (3.2), (3,3) is a z‘ -stable bridge. Therefore, the union of all such 

sets which coincide with the complement of set S is contained in the set 1 tTo, i, e. 
IV” C iv. On the other hand, the set G,, also is a c-stable bridge for any set G ofform 

(3.2). (3.3). Therefore, the union of all such sets, coinciding with the complement ofset 

M,, is contained in IV0 ; consequently, IVJi” C Ma. Thus, conditions (4.1) are proved, 



Alternative for the encounter-evasion differential game 383 

It remains to show the fulfillment of the condition of u-stability of set IV”. We per- 
form this by contradiction. Let there exist a point p* = (tx, x*, p.,,v*) E W”, an instant 

t* E it*, 61 , and a conaol V, of form (2.2) such that the relations 

G (t*, P*, V,) n w"= 0 
G (t, P*, V*) n M = 0 for t, 6 t 4 t* (4.2) 

are satisfied. From (4.2) we obtain the imbedding G (t*, p*, V,) c Wo, i.e. for every 
point P E G (t*, p*, V,) we can find a v-stable bridge WC”’ containing it. By virtue 
of Lemma 4.2, for arbitrary point p E G (t*, p*, V,), there exists a neighborhood S (p) 

imbedded in some v-stable bridge IV*(~), and containing this point, Since the attain- 
ability region G (t*, p*, I’,) is closed, then from an infinite covering of it by such neigh- 

borhoods S (p) we can select a finite covering S (pi) (i = 1, 2, . . . , k). The union 

(4.3) 

of bridges II$) containing the neighborhoods S (pi) introduced, is once again a v-sta- 
ble bridge, and the relation 

Wl”’ 3 G (t’, p*, I’*) (4.4) _ 
is valid for it. 

Let us now consider the set 
I#“) = [p = {t, a?, p, v}: 

** 

P E G (G P** v,) for t*dt<t*; p E WC”) for t* < t < 61 * 
From r&mm (4.4) - (4.6) we deduce that the set IV(“) is a v -stable bridge, it is not 
difficult to see that p* E W’,“,’ ; consequently, p* E%,, and p* + W”. The contradic- 
tion obtained proves Lemma 4.3. 

Now it is easy to establish the validity of the following alternative. 
Theorem 4.1. For arbitrary initial position pa = {to, ~0, ~0, va} and the 

number 6 > to, either the encounter problem or the evasion problem is solvable. 
In fact, by virtue of Lemma 4.3 the space of positions p = {t, 5, p, V} (p > 0, 

Y > 0) splits into two parts: WC”) = w” and I$‘,, = U I$‘c2’). If po E W”, then 
by virtue of Theorem 2.1 the encounter problem is solvable ; its solution provide8 a 
guide-control procedure defined for the bridge w” = w(ll). If, however, pO g W”, 

then po E id”o, i.e. the point p. belongs to some v-stable bridge wcv), and then the 
evasion problem is solvable, and the solution of this problem provides a guide-control 
procedure defined for the v-stable bridge [/C.(l). We note that when realizing the con- 
trol procedures described here, as the stable bridges we can use sets determined by prog- 

ram absorption operations (in regular cases), by recurrence procedures, and by direct 
methods (see [l, 3, 51. for example). 

5. As an illustration of the proposed control method we present the solution of the follow - 
ing simple pursuit problem. Let the motions of the pursuing and pursued objects be des- 
cribed by the one-type equations 

Yl’ = Y3 + !/II,6 (t - &Jr YS’ = 111 + MO& (t - to) 

y:s’ = - ay, + Ul’ + Y&36 (t - to), ~4’ = - ay, + lJ2’ + yo48 (t - to) 

ZI’ = z3 + z,,S(t - to), z2’ = 24 + 20.26 (t - to) 
23 . = - az3 $- L’I’ + z,,6 (t - to), .a = - cq + Vz’ + 5,,6 (t - to) 
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with the fulfillment of conditions (1.2) (PO > ~0). Using information only on the game 
position realized, we are required to construct a corm01 method U which ensures the 

contact of objects Y and z at a certain finlte instant. Here, by the contact of objects 

Y and z we mean the coincidence of the first two coordinates of the phase vectors y 
and z, , i.e. the fulfillment of the equalities yl[t] = zi[l] and yJt1 = z&t]. It can be 
verified that the set 

W@f = [p = {t, y, 2, P, Y} : y - 2 = yn - zo, 11 - Y = po - 1’0 for 

t = to; y - z = x0 (t), p. - v = 5” (8) for to < t < @“I 

is a u-stable bridge in the problem being examined. Here x’(t), E:‘(t) is the solution of 

0 0.2 0.6 y,,z, 

Fig. 1 

points g and 2 in the case 

the problem of the time-optimal transition of the 
system 

5'1 = x3 -+ (go1- 201) 6 (t - to) 

x.2 == za i (Yicz - 201) s (t - to) 

5'3 = T ZX3f w-t_ (yo3-203) 8 (t-to) 

5'4 ;=-a~4++~'23-(yar--1"04)8(t-tn) 

to the state .zi f@‘) = x2 (SO) = 0. The guide-control 

procedure for the bridge mentioned was implemented 

on a computer. The following initial data and para- 
meters were selected : 

y*r = 0, y*z = Yo, = ?I04 = 1 

201 = 202 = 203 - - 0, .%!o* = - 1 

a = 1, bLo = 4.74593, Y,, = 1.16395 

t0 = 9, 6’ = 1, A = 0.001 

The solid lines in Fig. 1 depict the trajectories of 

V” [t] = {l/poS (t), --l/,v,s (t - ‘I,,) = {s’lT& k’z’ [tl} 

The dashed lines picture the pursuit process for the case 

V’ [t] = {- 4Y0, O), 0 < t < l/4; Vltl GE 0, t > ‘14 

Under the parameters selected, contact is realized at the instant t = ?E’ = 1 . With 
respect to the first two coordinates the mismatch between the corresponding motions of 
the original system and the guide does not exceed an amout E = 0.003. 
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The theory of generation of periodic solutions in canonic systems of near-integ- 
rable differential equations was developed by Poincari for the purposes of celes- 
tial mechanics. In this paper we establish the applicability of these results to the 
classical problem of the motion of a heavy solid body with a fixed point, By the 
same token we have succeeded in essentially widening the class of periodic solu- 

tions appearing in this problem. 

1. Perturbation of uniform rotations. The Hamiltonian function of the 
problem being analyzed has the form 

F = F0 i @, (1.1) 

Here F, is the kinetic energy, @‘, is the system’s potential energy (the chosen constant 
multiplier p, is the product of the body’s weight by the distance from the center of gra- 
vity to the point of fixing). Canonic equations with Hamiltonian (1.1) have a cyclic 
integral, i.e. an area integral ; by fixing it constant, we reduce the problem being ex- 
amined to a system with two degrees of freedom, which we cali reiluced problem. When 
p = 0, we have the Euler-Poinsot case. In this unperturbed problem there exist particu- 
lar isolated periodic solutions, namely, uniform rotations around the principal axes of the 
inertia ellipsoid. Let us ascertain whether the equations with Hamiltonian function(l.1) 
admit of periodic solutions if p # 0 but is very small. 


